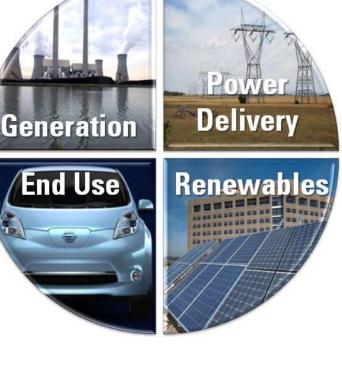


Biomass Potential for Electricity Production

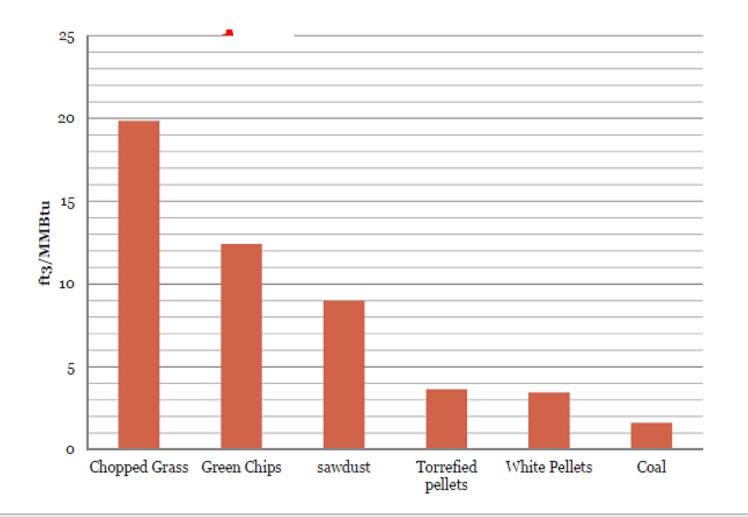
Steve Baxley, PE Southern Company R&D August, 16, 2018


Presentation Outline

- Southern Company Biomass R&D History
- Biomass Potential in the Southeast
 - -Projections
 - -Regulations
 - -Competition
 - -Conclusions

Southern Company R&D Overview

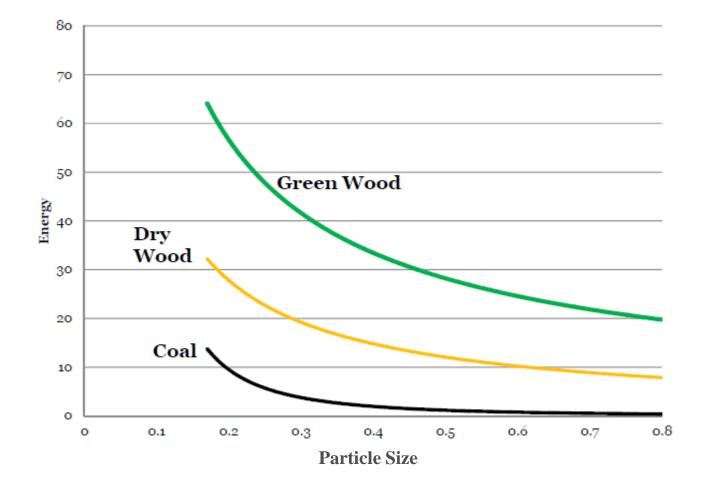
- *Mission:* Ensure Southern Company is a technology leader in the production, delivery and end-use of electricity
- **Goals:** Through a portfolio of new, hardened technology options, increase customer value, improve reliability, increase efficiency, minimize cost and/or reduce environmental impact
- *Leverage:* DOE, EPRI, utility, and university partnerships provide extensive co-funding and collaboration
- **Results:** Over the past 10 years, Southern Company's leveraged R&D investment of has returned a value of 10:1


Biomass R&D History

- Biomass based electricity generation
 - 100% biomass facilities: new or conversion of existing plant
 - Co-firing: firing biomass with coal at existing generating facility
- Co-Firing Technologies
 - -Co-Milling
 - -Coal Pipe Injection
 - Direct Injection
 - -Gasification

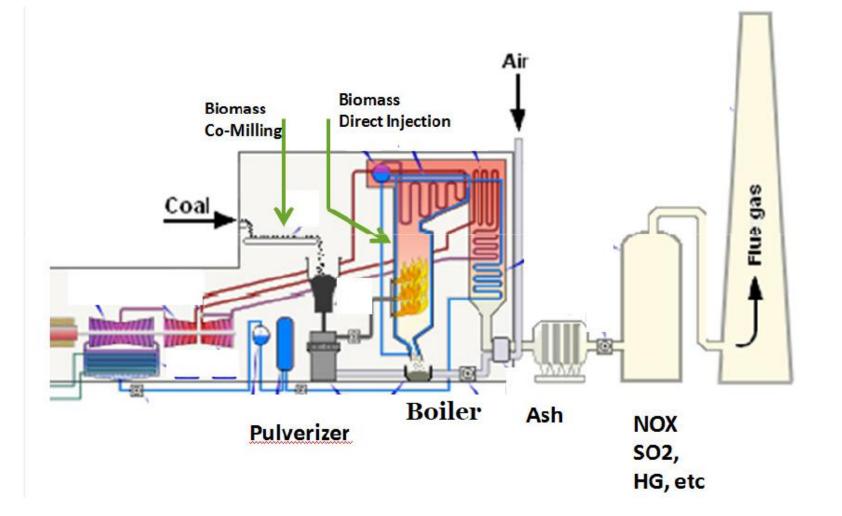
- Potential Advantages
 - Dispatchable renewable option
 - Existing power plants, reduced capital
 - Efficient power plants
 - Reduced financial risk
- Potential Concerns
 - -Safety
 - Emissions
 - -Operating
 - Performance

Designed to burn coal and "biomass" is not coal


Fuel Volume Requirements

Designed to burn coal and "biomass" is not coal

Energy for Size Reduction



Designed to burn coal and "biomass" is not coal

Coal Fired Power Plant

Biomass R&D Program

- Phase I- Physical & Laboratory Analysis
 - Physical Exam: fibers, brittle, dust, density
 - Ultimate & Proximate analysis
 - Ash minerals analysis and ash fusion temperature
 - -Metals
- Phase II- Pilot Testing
 - Co-milling pulverizer tests (amps, plugging)
 - Combustion tests (emissions, slagging, fouling, flame stability, ash, unburned carbon)
- Phase III- Power Plant Testing
 - Emissions
 - Efficiency
 - Operating at different loads
 - Performance

Biomass Experience

Wood and Sawdust

- 0-15% by weight co-milling, limited by mill performance
- 30% direct injection

Biomass Experience

Wood pellets

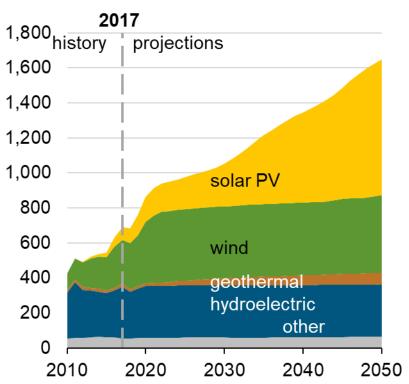
- Co-milling limited by pulverizers
 ΔP
- 10% pellets with no issues during Plant Barry test runs
- Others have reached much higher percentages

Biomass Experience

- Torrefied Wood
 - -Wood is "roasted" without oxygen
 - More like "coal" with low moisture, higher BTU, friable, higher bulk density when pelletized
 - Potential for high percentage co-firing
- Tests at Plant Scholz (40 MW)
 - EarthCare portable system
 - Pelletized then torrefied
 - Dust can cause explosion hazard
 - -Had TW pile fires
 - -0%, 20%, 50%, 75%, 100% TW
 - Should pelletize after torrefication

R&D General Results & Findings

- Co-firing provides opportunity to use existing power plant fleet to produce renewable energy
- Coal fired plants are designed to burn coal, biomass has very different properties than coal
- The limitation in co-firing is generally related to handling and pulverizing of the fuel
- Dust and explosions are real safety issues at high percentages
- Making the biomass more like coal by drying or roasting and compressing into pellets is effective but expensive
- High percentages of co-firing with direct injection can be achieved, but at higher capital cost



Biomass Industry Projections

2013 History Projections 1.000 800 Wind 600 Solar Geothermal 400 Biomass MSW/LFG 200 Hydropower 0 2005 2000 2013 2020 2025 2030 2035 2040

Renewable electricity projections, including hydropower (billion kWh/yr) EIA, Energy Outlook 2015) Renewable electricity generation, including end-use generation (Reference case) billion kilowatthours

Renewable electricity projections, including hydropower (billion kWh/yr) EIA, Energy Outlook 2018)

Biomass Hurdles

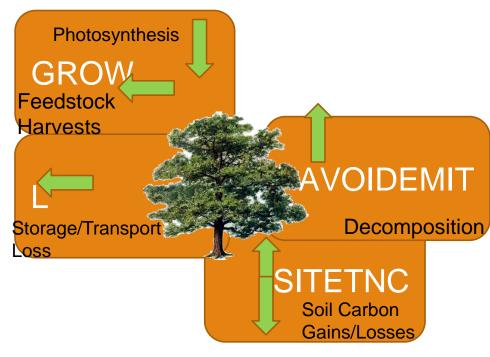
- Regulatory Uncertainty and Pressure
 - –Uncertainty- RPS, Clean Power Plan, and EPA Biogenic Framework
 - Regulations forcing shut down of older, smaller coal plants: MATS, ELG, CCR, 316B, NAAQS
- Competition
 - -Natural Gas
 - -Solar
 - -Wind
 - -Fuel price risk vs capital certainty

EPA Biogenic - Carbon Accounting

Biomass Accounting Factor (BAF = 0 implies Carbon Neutral)

BAF = (GROW + AVOIDEMIT + SITETNC + LEAK)(L)

Where:


GROW = Net of above ground biomass on the *production landscape*

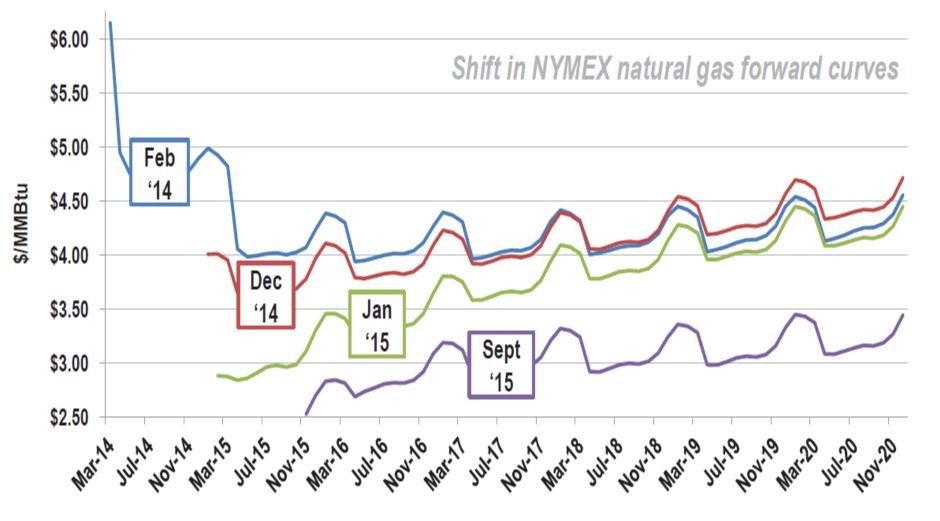
AVOIDEMIT = Avoided emissions that could have occurred without feedstock use

SITETNC = Delta in non-feedstock

LEAK = Leakage due to indirect impacts of biomass use occurring outside the assessment boundary (e.g., land use change)

L = Losses during transportation, processing and storage

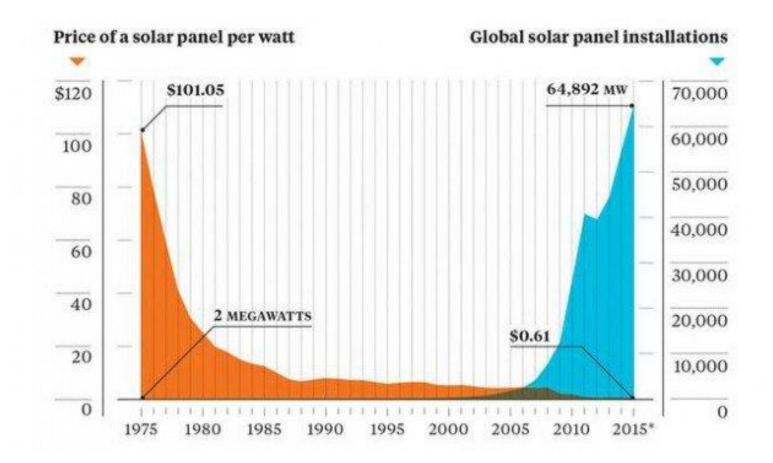
Sustainability and Biogenic CO2



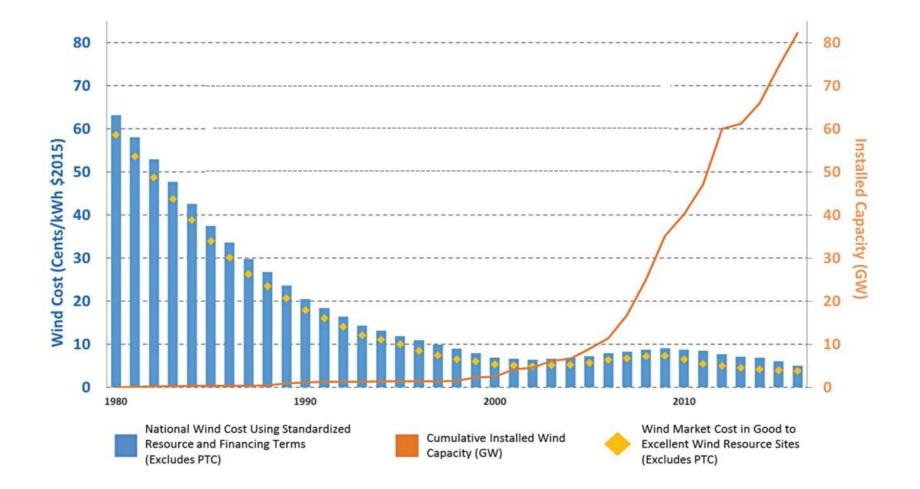
e SAB Panel said "Carbon neutrality cannot be assumed for all biomass energy a priori. There are circumstances in which biomass is grown, harvested and combusted in a carbon neutral fashion but carbon neutrality is not an appropriate a priori assumption; it is a conclusion that should be reached only after considering a particular feedstock's production and consumption cycle.

Forest Health and	Management Asses	ssment
Climate change and forest management policy and regulation	Forecasts of bioenergy project impacts	sis Implications
Forest sustainability assessment		Implications of project development on the carbon cycle Implications of bioenergy development on forest sustainability and health

Traditional Generation Competition



Gas price reductions with shale gas revolution


Renewable Competition

Solar price reductions as market scale increased

Renewable Competition

Wind price reductions as market scale increased

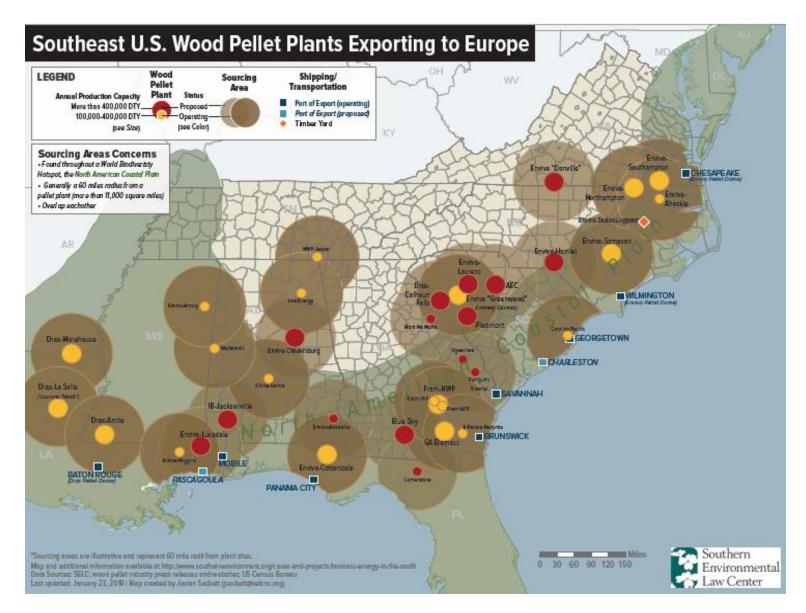
Comparing Fuels

Fuel	\$/MMBtu	\$/ton	HHV (Btu/lb)	Bulk Density (lb/ft3)	Energy Density (Btu/ft3)	
Coal	\$1-3	\$13-70	12,000	50	600,000	
Green Chips	\$3-4	\$30	4,700	34	159,800	
White Pellets	\$8-10	\$137	8,169	35	285,915	
Torrefied*	~\$10	~\$200	10,300	50	550,000	
Steam Exploded*	~\$11	~\$200	8,700	45	320,000	

*limited or no commercial availability at this time

Values shown are indicative pricing, not to be used for project evaluation

Estimated Renewable Cost Breakout



	White Pellets	Steam Exploded Pellets	Torrefied Pellets		Refurb Small Coal Unit	New Wood Fired Unit	Wind Turbines	Solar PV
Est. LCOE (\$/MWH)	\$148	\$150- \$200	\$150-180	\$60-\$70	\$85-\$130	\$175	\$30 - \$70	\$40- \$70
Capital (%)	8%	2%	5%	16%	20%	40%	77%	95%
0&M (%)	5%	3%	5%	7%	25%	25%	23%	5%
Fuel (%)	87%	95%	90%	77%	55%	35%	0%	0%

Values shown are indicative pricing, not to be used for project evaluation

Future of Biomass in the Southeast

Biomass Perspectives

- Technically proven approaches
 - Biomass co-milling is lowest cost but also lowest percentage
 - Co-firing limits are generally due to handling rather than combustion
 - Direct injection achieves higher biomass % but requires modifications
 - White pellets are commercially available and can achieve 100% biomass with equipment modifications
 - Black pellets can also achieve 100% biomass but do not yet have a stable market
 - Biomass Co-firing generation is dispatchable, but...
- Competition from "other" renewables
 - Cheap Solar and Wind Energy
 - Capital vs O&M (relatively expensive fuel)
- Uncertain regulatory framework for biomass in the U.S.

Questions?